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The rate of heat flow from one one-dimensional particle species to another is studied using 
the theory worked out by Eldridge and Feix (Phys. Fluids 6, 398 (1962)). Assuming initial 
Maxwellian distributions, some approximate formulas are derived which, though still 
somewhat complex, should be of use to simulators. The results of the theory are tested via 

simulation using a standard code (A. B. Langdon’s ES1 (Langdon and Birdsall, Plasma 
Physics via Computer Simulation, McGraw-Hill, New York, 1985)). The results indicate that 
heat flow between species is often quite rapid when the real (not necessarily the intended) 
temperatures are different, and is therefore a serious hazard. Reducing the number of grid cells 
per Debye length does not seem to reduce the rate of heat flow significantly over the range 
of grid cell sizes considered. In two and three dimensions the same effect exists, but the 
magnitude of the effect is not calculated here. ~c 1991 Academic Press, Inc. 

I. INTRODUCTION 

Several common practices have arisen in plasma simulation work which rely on 
varying the charge ratios between particles (of the same or differing species) in an 
unphysical way. One such practice is to model a minority species by subdividing it 
into a large number of particles, i.e., replace a small number of particles by a large 
number of particles each of which have the same charge-to-mass ratio, but a 
fraction of the charge and mass of the particle one actually wants to simulate 
[1, 23. Another practice is to vary the weights of particles in time [3]. Most of 
these practices have been adopted in order to reduce noice, but they raise the 
concern that heat flow between species can interfere with the correct results of the 
simulation. 

It is easy to see the origin of this concern. The true thermodynamic temperature 
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of any distribution is T= mu:. If the particles of a distribution are subdivided 
without altering their thermal velocities (which are usually chosen to reflect some 
desired resonant interaction), then the temperature of the subdivided species falls, 
and heat will flow from the other species (assuming they are intended to be at the 
same temperature). Researchers often overlook this fact because they are thinking 
in terms of Vlasov theory, in which temperature plays no role. Another source of 
confusion is the common idea that each simulation particle is meant to represent 
many real particles. A direct corollary of this idea would seem to be the principle 
that it should not matter how many real particles a given simulation particle is 
supposed to represent, but the above argument shows that thermodynamic 
arguments invalidate this simple picture of simulation. 

While the existence of this heat-flow effect is indisputable, it may not be of concern 
if the rate of heat flow is small enough. This heat flow rate is of central importance 
and has not been previously investigated in depth. 

Using the remarkable work of Eldridge and Feix [4], we will derive an expres- 
sion for this heat flow rate, interpret the terms physically, derive some approximate 
formulas, and finally test the theory with simulations. The theory and its inter- 
pretations appear in Section II, Section III contains the simulation results, and 
Section IV discusses the consequences of this effect for plasma simulation. 

II. THEORY 

The relevant work of Eldridge and Feix is contained in the appendix to Ref. [4]. 
Since this reference is readily available, it would serve no purpose to repeat their 
derivation here, but several comments on it are essential, first, because we have 
chosen slightly different notation that better illuminates the results in the present 
context and, second, because of some points and minor oversights. 

The first point is merely awkward. Eldridge and Feix introduced arbitrary 
reference values for charge (denoted as a) and number density (denoted as n,). 
These led to a non-standard definition of the plasma frequency oPl, and the intro- 
duction of a normalized charge z, = cr,/e. (It may have been these complications 
which led to the accidental omission of factors of zf in the definitions of F and f, 
and in their Eq. (28), which is their final result.) In our work, the standard 
definition of plasma frequency is used, and no arbitrary normalization factors are 
introduced. 

The other point is clarified in the text of their article, but not in the appendix. 
The final result of Eldridge and Feix contains a function denoted as an arc tangent 
of a ratio of two functions while what was intended was something slightly different. 
The strictly correct expression is an argument function of the two functions. The arc 
tangent function ranges from -n/2 to 7c/2, but the argument function ranges from 
--71 to rr, and this is essential. 
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The final result of Eldridge and Feix, when put in standard notation, is 

af, ’ ~~ -=- 
at 27~ n, au i[ 

f@-$EF] (-arg(+, 7taf/av))}, (1) oL 

where f, is the distribution function for species CI normalized such that its integral 
is one, 

and 

(4) 

This formula assumes more physical meaning if it is realized (as was pointed out 
by Langdon and Birdsall [5]) that 

-arg($, ~aflav)=arg(~(k,kv)), 

where the arg function is now to be interpreted as the phase angle in the complex 
plane, and x is the dielectric susceptibility. Because of the form of x, this expression 
is independent of k. The only factor influencing f at a given velocity that depends 
on the values off at any other velocities is the arg function. One can interpret 
this as particles interacting only with particles at or near the same velocity, but 
interacting through the electric field as modified by the entire plasma. 

Dawson showed heuristically that the time scale for velocity drag and diffusion 
should be of order N,/o,, where N, is the number of particles per Debye length 
[6]. This scaling can be deduced directly from Eq. (l), but Eq. (1) does not provide 
any simple answer for the constant of proportionality. 

One exact prediction of Eq. (1) is that a single species plasma does not evolve at 
all, regardless of its distribution. In fact, Dawson showed that a single species 
relaxes to a Maxwellian on a time scale proportional to NL/o,, [7]. In general, 
evolution on a time scale of N,/o, is to be expected, but when two or more species 
are involved, there are several space and time scales available, so that it is necessary 
to do some more estimation to find a useful scale rule. 

It is possible to generalize the single-species result to the following statement: if 
f, fs = 0 for all o! # j? (i.e., the distribution functions do not overlap), then the distribu- 
tion functions do not evolve to first order in N,. A more general constraint is pointed 
out by Birdsall and Langdon: 
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This is a powerful constraint, but not immediately useful except in the special cases 
noted above. 

One important contribution toward understanding heat flow effects was made 
by Okuda and Birdsall [S], who evaluated the drag diffusion coefficients for 
one-, two-, and three-dimensional plasmas of particles of non-zero extent. This is 
equivalent to the evaluation of Eq. (1) in the special case of isothermal Maxwellian 
distributions, but with the important addition of non-zero size particles. Their 
results, to which we will return in the simulation section, showed a reduction in 
heat flow when particle sizes were on the order of a Debye length. We will limit 
ourselves to the case of point particles, but investigate heat flow between differing 
distributions and test the results by simulation. 

Equation (1) is somewhat intimidating, but choosing Maxwellian distributions 
for each species as a special case simplifies it immensely. Driftless Maxwellians are 
not the only case of interest, but they are the most common, and it will be seen that 
they introduce enough complexity already as to make it impossible to give a simple 
rule of thumb. To simplify the algebra, let k,, = CI.I~JV~~ be the inverse of the Debye 
length for species a, then the first term in brackets in Eq. (1) becomes 

(6) 

where T, = m,vfa is the true (as opposed to intended) temperature of species ~1. 
Furthermore, substituting the usual expression for the susceptibility of a plasma in 
terms of the standard plasma dispersion fucntion Z [9] shows that for Maxwellian 
distributions, 

- arg($, af/dv) = arg (7) 

where the argument function is understood to be the angle in the complex plane 
and prime denotes derivative with respect to the argument of the Z function. 

Finally, since the instantaneous heat flow should suffice for an estimate, take the 
second moment of (l), i.e., multiply by n,m,v*/2 and integrate (integrating once by 
parts). This yields 

xarg( -Zkb,+j---))dv, 7 (8) 

The symmetry of this formula is evident, and it is also now possible to make an 
important observation regarding the term in brackets: it is always less than the 
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minimum of k&f, and k&fp. This upper bound will be useful in formulating 
approximations. The obvious physical interpretation of this term is that the 
particles of a given species at a given energy will receive energy (or lose it) 
in proportion to their numbers and charge strength (and weighted by the arg 
function). 

The general shape of the argument function is not obvious, but can be seen by 
plotting the real and imaginary parts of the Z’ function (see Fig. 1). Figure 2 shows 
the argument function for a two-species plasma for u,, = II,* and for u,, = IOU,,. As 
can be seen, there is some fine structure when the thermal velocities are different 
which cannot be ignored. 

Equation (8) can be written in the form 

dT, nxx ,=,=c U’,-TX,,, P 
(9) 

where 

(9) 

and clearly 

c,, = c,, . 

0 

Z 

-1 

FIG. 1. Real and imaginary parts of Z’ function for real argument. 
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FIG. 2. (a) Argument function of -2’. (b) Argument function of -Z’(o/$) - Z’( lo”/,/?). 
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Since the heat flow is evidently between pairs of species (though mediated by the 
dielectric of the entire plasma), it should be most illuminating to consider just two 
species. The time we would like to estimate is the time in which one of the distribu- 
tions changes temperature significantly. A reasonable formal definition of this time 
of interest (call it t) is the minimum over species of 

(11) 

Since the energy flow rates are the same between two species, comparison with 
Eq. (9) shows that the species with the minimum energy, or nT will have the 
minimum z. Unfortunately, examination of the relations between n, T, k,, and u, 
show that all four can be chosen independently, so any approximation will have at 
least these four parameters in it. 

Let us now specialize to the case of only two species which we will label species 
a and species 6. Since the formula for C,, has only two parameters per species and 
has the most complex form, it is the natural starting point for simplification. We 
shall divide the evaluation of Cab into four regimes: (I), u,, = v,~; (II), u,, + u,~ and 
k,, 9 kDb; (III), vt, 4 vtb and k,, - kDb; and (Iv), VI, < v,b and k&Jut, < k&,/v,,. 
This division is motivated by the approximation to be used for case II. The gaps 
between these regimes are of interest, but have a behavior intermediate between 
those given, so application of the complete Eq. (8) is necessary if a better estimate 
is desired than the worst of the closest cases given. 

Case I allows the simplification 

k$k;b 
= 0.36582 x ki, + kib 4 

= 0.36582 x 034b l 
O;.+O;b;’ 

(12) 

As a gross estimate of how important this should be in a real simulation, let us take 
0 Pa = w,,; then using our definition of z, 

(13) 

This is an alarmingly short time in the context of most simulations if the tem- 
perature ratio deviates much from unity. This is also what one would expect from 
purely dimensional arguments, so the other cases can be expected to scale similarly, 
though perhaps with different species dominating the time and space scales. 

Case II is the most complex one, and the most likely. The strategy of the 
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approximation can be understood from Fig. 3. Since the term in brackets in Eq. (8) 
is always less than the minimum, it can be seen that a good approximation, when 
the thermal velocities are highly disparate, is that this term can be replaced byf,(O) 
for v < v,, and by zero for v > v,, where v,, is roughly the point at which the two 
distribution functions, multiplied by their respective kD’s, cross. Some simple 
algebra shows that 

A further approximation is to approximate the arg function by a straight line with 
the same slope at the origin. For k,, e kD,, the second Z’ term can be ignored 
completely, leaving the curve of Fig. 2a, which is not far from a straight line in most 
of the region of interest, but the approximation can be expected to be a bit high. 
The imaginary part of the Z’(t) function divided by its real part is & l for small 
5, so 

(15) 

This is disappontingly complex for a rule of thumb, but, as will be shown, the func- 
tional dependence is borne out by numerical integration of Eq. (8). The estimate is 
roughly a factor of 1.5 too high, though. Fortunately, the logarithm can be 
estimated with relative case, and exact evaluation is not the goal. 

FIG. 3. Since f,fb/(f,+fb)~min(f,,fh), shaded area can be used as an approximation when 
thermal velocities are very different. 
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FIG. 4. Exact curve for case II versus approximations for cases II and III. (b) Exact curve for 
case III versus approximations for cases II and III. 
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In case III, as in case II, the arg function must be approximated, but now both 
Z’ terms must be taken into account. The real part of Z’(t) dies away roughly as 
exp( - c2), so the real part of k2,,Z’(v/& ut,) can be neglected. This is not very 
good for small u, but the factor of u in the integrand reduces the importance of 
small v. The imaginary part of the Z’ term for species b can also be neglected, since 
it is inversely proportional to vlb, so 

(16) 

Figure 4 shows calculations of two cases with the exact integral and the approxima- 
tions for both case II and case III. It can be seen that both approximations have 
their regions of validity, and both are necessary. 

In case IV, ki, f, < k& fb for all v, so it can replace the term in brackets in 
Eq. (8). Making the same approximation for the arg funtion as in case II, 

C v dv 

Each of these four cases scales as some dimensionless number times some 
frequency like a plasma frequency divided by some length like a Debye length, and 
so the heating time will scale like 

(18) 

The individual cases must be consulted to determine which Debye length and 
plasma frequency (perhaps with a ratio of thermal speeds multiplied in) should be 
used. 

III. SIMULATION RESULTS 

Since the different mathematical regimes necessary for construction of useful 
approximations ought to have some physical significance as well, they are logical 
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TABLE I 

20.5 

Run Parameters 

Set 1 2 3 4 5 

Case 
Length 

Time steps 
Grid cells 

NPQ 
N& 
t’/, 
WPa 

s&, 
Figure 

I 
25 

4000 
128 

1280-10,240 
12,800 

1 

1 
5 

I 
25 

1000 
128 

5120 
5120 

1 
0.145 

0.01-0.25 
7 

II III 
25 25 

4000 4000 
128 128 

5120 5120 
5120 5120 

0.1254.75 0.1-0.5 
1 0.1-0.5 

8 9 10 

I 
25 

4000 
32-256 

5120. 
12,800 

1 

Note. Simulation parameters; in addition, sO= 1, At=0.05, u,~= I, apb = 1, and q,/m,= - 1 for all 
rlUB. 

choices for simulation tests. Therefore, test simulations were run in three of the four 
regimes (case IV) being omitted, as it seems to be a less sensitive case). Additional 
runs were performed in order to test the effect of grid spacing. For consistency with 
the previous section, the second species (to be referred to as species 6) was given 
unit thermal velocity and plasma frequency, while species a was given smaller 
thermal velocity or plasma frequency. Both species were assumed to have the same 

.20 

.15 

.1 

.05 

0 
0 .2 .4 .6 .8 1 

Tb/Ta 

FIG. 5. Simulation results for equal thermal velocities and plasma frequencies (also equal charge-to- 
mass ratios). 
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charge-to-mass ratio (except in the simulations of case II-in order to create a 
temperature difference with equal numbers of particles). The complete simulation 
parameters are shown in Table I. The particles were loaded uniformly in position 
and randomly in velocity; experience has shown that this arrangement leads most 
quickly to the natural level of fluctuations. In all cases, the simulation results are 
compared with the exact Eq. (1) evaluated numerically. 

In the first set of runs (a special case of case I in the previous section), the two 
species are taken to have identical plasma parameters, except for the sign of their 
charge density, and the number of particles (i.e., only the temperatures differ). 
Therefore, the theoretical relaxation rate is a straight line when plotted against the 
temperature ratio. In these runs, the number of particles per Debye length of the 
first species is a constant 512, while the number of particles per Debye length of the 
second species is varied from 512 down to 51.2. The simulation results are shown 
in Fig. 5, and agree reasonably well with the numerically determined values. The 
error bars are eyeball estimates taken from the graphs. Temperature ratios near 
unity are avoided because of severe noise problems. A typical graph is shown in 
Fig. 6. The noise level in this graph is about average, so that for the noisier runs 
it is possible that the error is actually somewhat larger than that plotted. The 
disparity between the points at T,/T',, = 0.1 and 0.2 (barring the possibility that the 
predictions of the theory are incorrect) is the clearest example of this (these were 
the two noisiest runs). The disparity itself is likely to be a better indication of the 
overall accuracy of the data points than the plotted error bars. In general, the 
errors in Crrh are greatest when the number of particles is smallest and when the 
heat flow is smallest (i.e., when the two distributions are closest to equilibrium). 

12.4 

0 100 200 

Time 

FIG. 6. Representative energy history with bounding slopes. In this case, V, = O.Su, and wp,, = up*. 
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FIG. I. Simulation results for u, = vhr NO = N,,, and q. = q6 (unequal charge-to-mass ratios). 
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FIG. 8. Simulation results for wpo = mph, N, = Nb, and q,, = qb. 
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A more thorough test of case 1 is the second set of simulations (see Fig. 7). In 
these simulations the thermal velocities are held equal, and the charge per particle 
is the same for both species, but now the plasma frequencies are varied (again with 
204.8 per Debye length for species one). Again, temperature ratios near unity have 
not been plotted. 

The third set of runs corresponds to case II (see Fig. 8). In this case, the plasma 
frequencies of the two species are equal, and the thermal velocities are varied for 
equal numbers of particles. Again species one has 204.8 particles per Debye length, 
but since the Debye length for species two is decreasing, the grid spacing must be 
decreased for each run in order to maintain Ax/l, < 0.2 for both species. As before, 
the agreement is reasonably good, except for the smallest ratio of thermal speeds. 
Inspection of the distribution functions at the end of the runs shows that they are 
quite different from Maxwellians. If the heating time for the cold species is com- 
puted for a ratio of thermal velocities of ten, it is found to be roughly 70/o,, which 
is less than the time necessary to measure a reliable slope. Thus it seems that the 
heating rate is higher because the assumption of Maxwellian distributions broke 
down before the initial rate of heat flow could be measured. 

The fourth set of runs corresponds to case III. This time the Debye lengths are 
held equal, and the number of particles is held equal at 204.8, meaning that the 
charge density of species two (and the charge per particle) will be less than that for 
species one. It is impossible to make the charge densities of the two species equal 
and opposite in this case without changing the charge-to-mass ratio, but there is no 
need for the species to have equal and opposite charges. A uniform neutralizing 

.lO 

% .05 
0 

0 
0 .l .2 .3 .4 .5 .6 

Va 

FIG. 9. Simulation results for I,, = ,IDbr N, = Nhr and 4. = qb (unequal charge densities). 
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background charge has no effect on the heat flow. The results are shown in Fig. 9, 
and again they seem to agree with theory. 

The fifth and final set of runs duplicate one of the runs from the first set, but at 
varying values of Ax/A,. For convenience, the system length was chosen to be 32 
rather than 25, and the number of grid cells per Debye length was chosen suc- 
cessively to be 8, 4, 2, and 1. All the rates seem to be slightly below the prediction 
(see Fig. lo), but there is a marked decrease in the heat flow rate only for R, = Ax, 
and this is by less than a factor of two. Choosing Ax/l, > 1 becomes risky due to 
increasing self-heating and alteration to the dispersion relation which can even 
produce instability. There is nothing definitive about this limit, but to exceed it one 
must be very aware of the many things that can go wrong, so we will not exceed 
it here. The simulations agree quite well with the one-dimensional result of Okuda 
and Birdsall [S]. It is worth noting that in two and three dimensions a Ax/i, of 
unity should give much larger reductions in the heat flow rate (between one and 
two orders of magnitude). 

One statistical feature of the results requires some comment. On the whole, the 
results tend to be less than the predictions. Several reasons may exist for this. First, 
the graphical method for determining the error bars favors low estimates if the 
slope is a decreasing function of time, which was indeed the case in most of the 
runs. Second, the time step and linitesimal particle size may have a small systematic 
effect. Two other obvious possibilities are simple coincidence and an incorrect 
theory. Despite the statistical errors, it is clear that the results are off by a few 
percent and not orders of magnitude, and this is the important feature in practical 
terms. 

0”“““““““’ 
8 4 2 1 

hIAX 

FIG. 10. Results for varying values of ~,/dx. 
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IV. CONSEQUENCES FOR SIMULATION 

The theory of Eldridge and Feix, along with the work in Section II of this paper, 
is nice to have, but it is unlikely that any simulator would want to resort to such 
a detailed calculation in order to bolster his simulation results. Therefore, aside 
from the rules of thumb so far derived, the theory is mostly useful in the character 
of its results. 

There is one aspect in particular of the results which has great significance for 
practical tests of simulation accuracy. Consider the practice of representing a 
minority species by a large number of particles, each of which is much less massive 
than a particle of the majority species (we will call this practice particle chopping, 
but it is sometimes referred to as the use of superparticles). If the result of a simula- 
tion run is that the minority species heats, it is of interest to know whether that 
heating is physical or numerical. The particular problem may not involve 
Maxwellians, and the Eq. (1) may not be easy to evaluate for the actual distribu- 
tions. A numerical test would be desirable. 

The time-tested method of determining the effects of non-physical processes in a 
simulation plasma is to alter the simulation parameters, observing whether different 
results are thus obtained. In the case of particle chopping, the obvious way of 
testing the effects of the chopping would be to vary the degree of chopping. Our 
work, however, shows that this is not a good test, since the limit approached is 
that of zero temperature for the chopped species, while the unchopped species 
determines the rate of heat flow. The proper way to test for heat how effects is to 
chop the unchopped (majority) species. 

In simulations in which particle chopping does not occur, the heat flow is less 
likely to be a problem unless the temperature difference between the species is 
significant. The worst case is, of course, when the temperature difference is such as 
to bring the thermal velocities closer. 

This context of simulation raises an interesting possibility. The judicious use of 
particle chopping could be used to reduce or remove a temperature difference in a 
simulation in which one would otherwise exist. Instabilities on a macroscopic scale 
would still be present (temperature does not enter into the Vlasov theory), but 
much longer runs would be possible, since the artificially high heat flow has been 
reduced or eliminated. One such scenario would be that of a high-temperature 
minority. 

V. SUMMARY 

The heat flow rate between species of one-dimensional point particles (the sheet 
model) having Maxwellian distributions has been cast in the form 

d4z =‘I (Tfi- TJ.C,,(q,, vtlr 0~2, 012, . ..)> 27 r=O 2 p (19) 
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where C,, = C,, are known but rather complex functions of the plasma frequencies 
and thermal velocities of all the species, using the theory of Eldridge and Feix. 
From this result approximations for four regimes were derived for the special case 
of two species. These approximations were tested against the exact expression. 

The theory was tested in detail against simulation results with reasonable agree- 
ment. It was found that choosing the number of grid cells per Debye length to be 
small did not reduce the rate of heat flow enough to be of use. 

Finally, the practical importance of this work to simulation was assessed, par- 
ticularly regarding the practice of replacing a few particles of a given species with 
a large number of smaller particles with the same charge-to-mass ratio (chopped 
particles), It was concluded that under many circumstances the heat flow between 
species could be a strong effect and that some care is necessary in making test runs 
to assess its magnitude. 
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